A New Energy-Absorbing Device for Motion Suppression in Deep-Sea Floating Platforms
نویسندگان
چکیده
Deep-sea floating platforms are one of the most important large structures for ocean energy exploitation. A new energy-absorbing device named S-shaped Tuned Liquid Column Damper (TLCD) has been invented for the suppression of the horizontal motion and vertical in-plane rotation of a deep-sea floating platform. A conventional tuned liquid column damper has a U-shaped water tunnel to absorb the excessive energy of the main structure. The application of U-shaped dampers in deep-sea floating platforms is difficult due to the restriction of a large horizontal length. A novel S-shaped damper is proposed to retain the same amount of liquid using a shorter S-shaped tunnel. Theoretical and experimental works are conducted and prove that an S-shaped damper needs less than half the horizontal length to provide the same suppression as a U-shaped damper. A coupling calculation model is proposed and followed by the sensitivity analysis. The study demonstrates the applicability of the novel S-shaped damper for the motion suppression in deep-sea floating platforms.
منابع مشابه
THE USAGE OF ARTIFICIAL NEURAL NETWORKS IN HYDRODYNAMIC ANALYSIS OF FLOATING OFFSHORE PLATFORMS
Floating offshore structures, particularly floating oil production, storage and offloading systems (FPSOs) are still in great demand, both in small and large reservoirs, for deployment in deep water. The prediction of such vessels’ responses to her environmental loading over her lifetime is now often undertaken using response-based design methodology, although the approach is still in its...
متن کاملAn Experimental Investigation on the Performance and the Wake Characteristics of a Wind Turbine Subjected to Surge Motion
There are many advantages of floating wind turbines in deep waters, however, there are also significant technological challenges associated with it too. The dynamic excitation of wind and waves will induce excessive motions along each of the 6 degrees of freedom (6-DOF) of the floating platforms. These motions will then be transferred to the turbine, and directly impact the turbines’ performanc...
متن کاملPassive Vibration Control for Fatigue Damage Mitigation in Steel Jacket Platforms
Considering the stress cycles in the joints and members due to wave induced forces on offshore platforms, fatigue analysis is therefore one of the most important analyses in the offshore platforms design. Although most of the steel jacket type platforms are designed and located in areas with relatively high ratios of operational sea-states, for maximum environmental events, would have acceptabl...
متن کاملExperimental Study of the Performance of Floating Breakwaters with Heave Motion
Nowadays, the application of floating breakwaters in small or recreational harbors has found more popularity. These types of breakwaters are more flexible in terms of design, configuration and especially installation compared with fixed breakwaters. In the current study, the performance of floating breakwater (FBs) under regular waves was studied using the physical modeling method. For the mode...
متن کاملSteel Catenary Riser-Seabed Interaction Due to Caspian Sea Environmental Conditions
This paper investigates the integrated riser/vessel system which is subjected to random waves. Riser pipelines are the main components of the oil and gas offshore platforms. Whereas Iran country has been located on the fringes of Caspian Sea deep water, therefore study and research in this area is increasingly essential. The fluctuation of floating production causes the severe response and grea...
متن کامل